US009253490B2

a2 United States Patent

Hardy et al.

US 9,253,490 B2
Feb. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

OPTIMIZING VIDEO TRANSFER
Applicant: QUALCOMM TECHNOLOGIES
INTERNATIONAL, LTD., Cambridge
(GB)

Inventors: Philip Hardy, Ely (GB); Steven
MecBirnie, Cambridge (GB)
Assignee: QUALCOMM TECHNOLOGIES
INTERNATIONAL, LTD., Cambridge
(GB)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 216 days.

Appl. No.: 13/907,552

Filed: May 31, 2013

Prior Publication Data

US 2014/0355664 Al Dec. 4, 2014

Int. Cl1.
GO6T 1/00
GO6T 17/20
GO6T 5/40
HO4N 1/00
HO4N 7/04
HO4N 13/00
HO4N 19/12
HO4N 19/17
HO4N 19/136
HO4N 1927

U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2014.01)
(2014.01)
(2014.01)
(2014.01)

HO4N 19/12 (2014.11); HO4N 19/136
(2014.11); HO4N 19/17 (2014.11); HO4N 19/27
(2014.11)

Field of Classification Search
CPC combination set(s) only.
See application file for complete search history.

Computing Device

(56) References Cited
U.S. PATENT DOCUMENTS
5,553,832 A * 9/1996 Zaguroli, Jr. ... 254/267
6,651,252 Bl 11/2003 Gordon et al.
8,073,047 B2* 12/2011 Fallonetal. 375/240
2002/0006165 Al 1/2002 Kato
2005/0193396 Al 9/2005 Stafford-Fraser et al.
2006/0184982 Al* 82006 Pazetal.cccovvvvnnnne. 725/88
2008/0120675 Al* 5/2008 Morad et al. ... 725/120
2009/0265744 Al* 10/2009 Singh et al. . .. 725/105
2010/0002692 Al* 1/2010 Bimsccccoevvvinienenne 370/389
2012/0057788 Al 3/2012 Fukuhara et al.
2012/0191805 Al* 7/2012 Feeetal. ...ccccoocvvrenene 709/217
2014/0269930 Al* 9/2014 Robinsonetal. 375/240.24
2014/0334381 Al* 11/2014 Subramaniam etal. 370/328
FOREIGN PATENT DOCUMENTS
WO 2010114512 10/2010
OTHER PUBLICATIONS

Search Report for U.K. Patent Application No. GB1320716.2 mailed
Now. 10, 2014 (3 pages).

* cited by examiner

Primary Examiner — Wesner Sajous

(74) Attorney, Agent, or Firm — The Marbury Law Group,
PLLC

(57) ABSTRACT

Methods of optimized video transfer are described in which
display data is divided into a plurality of portions, each por-
tion corresponding to a class of image data, and the different
portions are encoded for transmission to a remote display
device using different encoding schemes. In an embodiment,
the composite display data is never rendered at the source
device and instead portions of display data are generated by
an application based on an advertised set of classes of image
data. In other embodiments, the composite display data is
stored in a framebuffer at the source device and is split into
portions according to a classification of the display data. In
various embodiments the classification may be performed
based on sniffing graphics commands used to generate the
composite display data and in other embodiments, the clas-
sification may be performed based on a rate of change of
pixels in the composite display data.

18 Claims, 10 Drawing Sheets

100

Display Device

U.S. Patent Feb. 2, 2016 Sheet 1 of 10 US 9,253,490 B2

100

Computing Device 108
~

Encoder Encoder Encoder

NS

Multiplexer

/

Display Device

104 116
N
. 113
Display /
Combiner

AN
N A
106 / 114

Decoder Decoder Decoder

\ /

Demultiplexer ~

h

FIG. 1

U.S. Patent Feb. 2, 2016 Sheet 2 of 10 US 9,253,490 B2
202
GENERATE VIDEO DATA

~ CLASSIFY VIDEO DATA
204 T

~ SPLIT VIDEO DATA
206

))
ENCODE DIFFERENT PORTIONS USING | —_, 208

DIFFERENT ENCODING SCHEMES

)

MULTIPLEX ENCODED PORTIONS

1)

TRANSMIT OVER TRANSMISSION
LINK TO DISPLAY DEVICE

L 212

\
|
|

V4

RECEIVE VIDEO DATA ™~ 220
DEMULT!PLE\)I(,VIDEO DATA P~ 222
&
DECODE EACH PORTION ~~ 224
&
COMBINE DECODED PORTIONS |~ 226
RENDER vnogé STREAMTO |, 228
DISPLAY

FIG. 2

U.S. Patent

Feb. 2, 2016 Sheet 3 of 10
300
~
Computing Device
. 304 306
Video (__J__] Image |~/
Generator ~ Classifier
e <
N N N
Mapping ~) r308
module ——— Splitter
302 -
7 AN - =7
Le— " " \.—~""\ ~Z 108
Encoder| |Encoder| |Encoder ™
110
Multiplexer ~

FIG. 3

US 9,253,490 B2

U.S. Patent Feb. 2, 2016

Display Device

Display Device

406

Sheet 4 of 10 US 9,253,490 B2

400

/

404
Display Device

Computing
Device

FIG. 4

402

404
Display Device

U.S. Patent Feb. 2, 2016 Sheet 5 of 10 US 9,253,490 B2

500

5

504
A A 526
USRS MU reeeeny58 523
| e N ol
v , 530 |Communication| | || Graphics accelerators |[GPU
{ 7 A N .
§ i : g niljterface > Graphics
X~ Framebuffer System
.. 1 Decoder [«--57 i 528 =
o 524 / 522
Display | 520
50 isg device ~
4 506
rNJ 502
Y i
/\5/08 .
Comrﬁu'nication ,\5/10
Processor > intierface
3 v Y
509 1 \
i L \ 4
i |Memory 516 : 534| |l Graphics accelerators || GPU
i 7 4 ~ i Graoh
5 - raphics
Operating (51 Remote | Framebuffer System
system 531 ..., display driver | | £ = =
: y - i i 52‘}/ 513
; 52% { 518 60i 515
: Y ¥V -~/ r~/ H Displ 512
Application Local display |/ |61} d‘:ﬁ:g ~
' software driver
i 1
L 519
-
L - Encoder [eeeeemeeesaneensd

FIG. 5

U.S. Patent

Feb. 2, 2016 Sheet 6 of 10

US 9,253,490 B2

REMOTE DISPLAY DRIVER ADVERTISES CLASSES TO
OPERATING SYSTEM

L~ 602

APPLICATIONS ACCESS REMOTE DISPLAY DRIVER
THROUGH OPERATING SYSTEM

L~ 604

APPLICATIONS PROVIDE GRAPHICS COMMANDS TO
REMOTE DISPLAY DRIVER VIA OS

L~ 606

REMOTE DISPLAY DRIVER ACTS AS A CLASSIFIER AND
DECIDES WHICH ENCODER TO SEND EACH CLASS TO

| —~—~ 608

ENCODERS ENCODE GRAPHICS COMMANDS

ENCODED STREAMS OF GRAPHICS COMMANDS
MULTIPLEXED TOGETHER

L~ 612

MULTIPLEXED STREAM SENT OVER TRANSMISSION
LINK TO DISPLAY DEVICE

L~ 614

RECEIVED STREAM DEMULTIPLEXED AT DISPLAY
DEVICE

|~ 616

EACH DEMULTIPLEXED PORTION DECODED BY
DECODERS

L —— 618

OUTPUT FROM DECODERS SENT TO GRAPHICS CARD
FOR USE IN RENDERING AN IMAGE ON THE DISPLAY

FIG. 6

U.S. Patent Feb. 2, 2016 Sheet 7 of 10 US 9,253,490 B2

700

5

704
~
A
, ererenenensesenesasssanssseskpescasanenaenees 80 726 723
4 | ‘7/30 __|Communication Graphics accelerators | | GPU
7] interface Ly '
i 1 : Graphics
: : ~ Framebuffer System
Leerds Decoder |«--¢79 728 — o=
) 724 / 722
Display | 720
78 device [~
1 706
702
A 4 /\/
708
o~
Communication ,\7/10
Processor > interface
A\ 4 4
A
709
L. Y
Memory /\316 /\7}34 Graphics acce!erat(o;s h.GPU
. 7 raphics
Operating ‘71 Filter Driver (,,---5 Framebuffer System
system 73| i 1. | A7~
7w el 1714 / L'7\13
2% 718% i 715 i
Yy v~/ ¥ o~ Disol 712
Application | i | Local display [{74! d:ﬁ:ey ~
software driver i
. §
L 719
wnedoremmenanns - Encoder |eg----eeeemeeens 78

FIG. 7

U.S. Patent

Feb. 2, 2016 Sheet 8 of 10

US 9,253,490 B2

LOCAL DISPLAY DRIVER ADVERTISES CAPABILITIES TO
OPERATING SYSTEM

|~ 802

L

APPLICATIONS ACCESS LOCAL DISPLAY DRIVER
THROUGH OPERATING SYSTEM

L~ 804

N

APPLICATIONS PROVIDE GRAPHICS COMMANDS TO
LOCAL DISPLAY DRIVER VIA OS

L~ 806

J

FILTER DRIVER SNIFFS GRAPHICS COMMANDS

L~~~ 808

S

GRAPHICS COMMANDS SENT TO LOCAL GRAPHICS
CARD

L~~~ 810

e

GRAPHICS CARD RENDERS FRAMES AND STORES
THEM IN THE FRAMEBUFFER

L~~~ 812

)

FILTER DRIVER ACCESSES DATA IN FRAMEBUFFER,
SPLITS DATA AND CLASSIFIES THE PARTS

L~ 814

J

DIVIDED DATA SENT TO ENCODERS

L~ 816

L

ENCODERS ENCODE IMAGE DATA

, —~—~ 818

L

ENCODED STREAMS MULTIPLEXED TOGETHER

J

MULTIPLEXED STREAM SENT OVER TRANSMISSION
LINK TO DISPLAY DEVICE

L~ 822

d

RECEIVED STREAM DEMULTIPLEXED AT DISPLAY
DEVICE

L~ 824

J

EACH DEMULTIPLEXED PORTION DECODED BY
DECODERS

L —~—~ 826

J

OUTPUT FROM DECODERS SENT TO GRAPHICS CARD
FOR USE IN RENDERING AN IMAGE ON THE DISPLAY

L —~—~ 828

FIG. 8

U.S. Patent

€. 2, eet’o ’ ’
Feb. 2, 2016 Sheet 9 of 10 US 9,253,490 B2
900
904
— - '&mo '\ 926 923
S O
y . 930 [Communication| { || Graphics accelerators |[GPU
71 il interface | - Graphics
g A Framebuffer System
2 Decoder |«--+99 i 928 o
= 924 / 922
Display | 920
{08 device [~
1 906
902
A4
/308 :
Commu.nication ,\9/1 0
Processor - interface
AT, S ¥
§ A4 \4
H A
i 909 \
A 4
i |Memory 916 /_334 Graphics accelerators || GPU
Operating (91 Remote (95 Framebuffer GSra;ihi'f
system 93| | Display Driver(— yste
1 o14 / 913
92%F 1918 3 915
L 7B Vi Bispl 912
Application i | Local display | i[04 d:ﬁ:g —
software driver
: |
L 919
: /|
LY SV = Encoder |ge--ecamemeeees 96;

FIG. 9

U.S. Patent

Feb. 2, 2016 Sheet 10 of 10

US 9,253,490 B2

LOCAL DISPLAY DRIVER ADVERTISES CAPABILITIES TO
OPERATING SYSTEM

L —~—~1002

\)

APPLICATIONS ACCESS LOCAL DISPLAY DRIVER
THROUGH OPERATING SYSTEM

L~ 1004

J

APPLICATIONS PROVIDE GRAPHICS COMMANDS TO
LOCAL DISPLAY DRIVER VIA OS

~— 1006

GRAPHICS COMMANDS SENT TO LOCAL GRAPHICS
CARD

S

GRAPHICS CARD RENDERS FRAMES AND STORES
THEM IN THE FRAMEBUFFER

L —~—1010

L

REMOTE DISPLAY DRIVER ACCESSES DATA IN
FRAMEBUFFER, SPLITS & CLASSIFIES IT

L ~—~1012

|

DIVIDED DATA SENT TO ENCODERS

L~—1014

J

ENCODERS ENCODE IMAGE DATA

L —~—-1016

L

ENCODED STREAMS MULTIPLEXED TOGETHER

L —~—~-1018

L

MULTIPLEXED STREAM SENT OVER TRANSMISSION
LINK TO DISPLAY DEVICE

~—1020

&

RECEIVED STREAM DEMULTIPLEXED AT DISPLAY
DEVICE

L ~—1022

J

EACH DEMULTIPLEXED PORTION DECODED BY
DECODERS

L ~—-1024

J

OUTPUT FROM DECODERS SENT TO GRAPHICS CARD
FOR USE IN RENDERING AN IMAGE ON THE DISPLAY

L —~—~1026

FIG. 10

US 9,253,490 B2

1
OPTIMIZING VIDEO TRANSFER

BACKGROUND

Many systems involve the transfer of video data and
examples include remote display systems where the display
on a device, such as a mobile telephone, is transferred onto a
remote display which may, for example, be a high definition
monitor. This enables the display on a small form factor
device to be viewed on a much larger screen.

The embodiments described below are not limited to
implementations which solve any or all of the disadvantages
of known methods and systems for video transfer.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter.

Methods of optimized video transfer are described in
which display data is divided into a plurality of portions, each
portion corresponding to a class of image data, and the dif-
ferent portions are encoded for transmission to a remote dis-
play device using different encoding schemes. In an embodi-
ment, the composite display data is never rendered at the
source device and instead portions of display data are gener-
ated by an application based on an advertised set of classes of
image data. In other embodiments, the composite display data
is stored in a framebuffer at the source device and is split into
portions according to a classification of the display data. In
various embodiments the classification may be performed
based on sniffing graphics commands used to generate the
composite display data and in other embodiments, the clas-
sification may be performed based on a rate of change of
pixels in the composite display data.

A first aspect provides a method comprising, at a comput-
ing device: using a plurality of encoders to encode different
portions of display data using different encoding schemes;
multiplexing the encoded portions together to form a single
stream; and transmitting the stream to a remote display device
over a transmission link, wherein the display data is divided
into the different portions according to a plurality of classes of
image data.

A second aspect provides a system comprising a comput-
ing device, the computing device comprising: a source of
display data; a plurality of encoders, wherein each encoder is
arranged to encode a portion of display data using an encod-
ing scheme; and a multiplexer arranged to multiplex the
encoded portions together to form a single stream for trans-
mission to a remote display device over a transmission link,
wherein the display data is divided into the different portions
according to a plurality of classes of image data.

The methods described herein may be performed by soft-
ware in machine readable form on a tangible storage medium
e.g. in the form of a computer program comprising computer
program code means adapted to perform all the steps of any of
the methods described herein when the program is run on a
computer and where the computer program may be embodied
on a computer readable medium. Examples of tangible (or
non-transitory) storage media include disks, thumb drives,
memory cards etc and do not include propagated signals. The
software can be suitable for execution on a parallel processor
ora serial processor such that the method steps may be carried
out in any suitable order, or simultaneously.

10

15

40

45

55

2

This acknowledges that firmware and software can be valu-
able, separately tradable commodities. It is intended to
encompass software, which runs on or controls “dumb” or
standard hardware, to carry out the desired functions. Itis also
intended to encompass software which “describes” or defines
the configuration of hardware, such as HDL (hardware
description language) software, as is used for designing sili-
con chips, or for configuring universal programmable chips,
to carry out desired functions.

The preferred features may be combined as appropriate, as
would be apparent to a skilled person, and may be combined
with any of the aspects of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will be described, by way of
example, with reference to the following drawings, in which:

FIG. 11is a schematic diagram of an example video transfer
system,

FIG. 2 is a flow diagram of an example method of opti-
mized video transfer;

FIG. 3 shows a schematic diagram of another computing
device which may be used in the system of FIG. 1;

FIG. 4 is a schematic diagram of another example video
transfer system;

FIG. 5 is a schematic diagram of a further example video
transfer system;

FIG. 6 is a flow diagram of a further method of optimized
video transfer;

FIG. 7 is a schematic diagram of a yet further example
video transfer system;

FIG. 8 is a flow diagram of a yet further method of opti-
mized video transfer;

FIG. 9 is a schematic diagram of another example video
transfer system; and

FIG. 10 is a flow diagram of another method of optimized
video transfer.

Common reference numerals are used throughout the fig-
ures to indicate similar features.

DETAILED DESCRIPTION

Embodiments of the present invention are described below
by way of example only. These examples represent the best
ways of putting the invention into practice that are currently
known to the Applicant although they are not the only ways in
which this could be achieved. The description sets forth the
functions of the example and the sequence of steps for con-
structing and operating the example. However, the same or
equivalent functions and sequences may be accomplished by
different examples.

As described above there are many systems which involve
the transfer of video data and examples include remote dis-
play systems where the display on a mobile computing
device, such as a mobile telephone, is transferred onto a
remote display and the transfer of video data may be over a
wireless link. Video data is comprised of multiple classes of
image data (e.g. a video stream, bitmap graphics and a cursor)
and current systems are typically optimized for a particular
class of image data which means that the transmission of
composite video data (i.e. video data comprised of multiple
classes) is inefficient. This inefficiency leads to an increase in
the power consumption of the source computing device
(which generates the video data) such as a mobile computing
device.

FIG. 11is a schematic diagram of an example video transfer
system 100 which may, for example, be a remote display

US 9,253,490 B2

3

system. The system 100 comprises a computing device 102,
which may be a mobile computing device such as a mobile
telephone, tablet computer, handheld gaming device, digital
camera, etc. Video data is transferred from the computing
device 102 over a transmission link 104 to a display device
106. The transmission link 104 may, for example, be a wire-
less link (e.g. using Bluetooth™ or Wi-Fi™). The display
device 106 comprises a demultiplexer 112, a plurality of
decoders 114, a combiner 113 and a display 116. In an
example, the demultiplexer 112, plurality of decoders 114
and combiner 113 may be implemented in hardware with a
connection (e.g. DVI or HDMI) to a monitor (as display 116).
In another example the display device 106 may comprise a
smart TV and the demultiplexer 112, plurality of decoders
114 and combiner 113 may be implemented in software run-
ning on the smart TV.

The operation of the system of FIG. 1 can be described with
reference to FIG. 2 which shows a flow diagram of an
example method of optimized video transfer. Video data is
generated by the computing device 102 (block 202) and as
described above, this video data may comprise multiple
classes of image data. Examples of classes of image data
include: graphics, video and a mouse cursor, although there
may be more classes and any of these high level classes may
be split into more than one class. Further examples of classes
of'image data include: bitmap graphics (e.g. text/logo), IPEG
images, text on a background (e.g. on a solid background),
photographs, compressed video (e.g. MPEG video), layered
2D data, vector graphics, etc. The previous examples of
classes all relate to 2D image data and the classes may further
cover 3D graphics, e.g. 3D meshes, textures, etc.

The video data which is generated by the computing device
102 (in block 202) may be generated as composite video data
and then this composite video data may be classified to deter-
mine which parts of the data belong to different classes (block
204). Following classification, the video data is split into
portions (block 206) where each portion corresponds to a
class of image data. Each portion may correspond to a differ-
ent class of image data or there may be more than one portion
which corresponds to the same class of image data (e.g. two
video portions). Each portion of image data is then sent to a
different one of the plurality of encoders 108 in the computing
device 102.

Alternatively, the video data which is generated by the
computing device (in block 202) may never be combined to
form the composite video data and in which case it is not
necessary to classify and split the data (blocks 204-206 omit-
ted) and each class of image data which is generated (in block
202), i.e. each portion of the video data, is sent to a different
one of the plurality of encoders 108 in the computing device
102.

The encoders 108 within the computing device 102 are
arranged to use different encoding schemes to encode por-
tions of the video data for transmission over the transmission
link 104 (block 208). In some examples, each encoder may
use a different encoding scheme or there may be two or more
encoders (within the set of encoders in a computing device
102) that use the same encoding scheme. Examples of encod-
ing schemes which may be used include, but are not limited
to: lossy compression schemes (e.g. H.264) and lossless com-
pression schemes (e.g. Huffman based compression, run-
length encoding). In some examples, proprietary encoding
schemes may be used. In various examples, there may be two
or more encoders which use the same encoding scheme but
with different update rates. It will be appreciated that for any

10

15

20

25

30

35

40

45

50

55

60

65

4

particular video stream (generated in block 202), some or all
of'the encoders 108 in the computing device 102 may be used
to encode the portions.

Where the original portion of the video data input to an
encoder 108 is already encoded (e.g. an MPEG video), the
encoder 108 further encodes the portion of the video data (e.g.
an encoder may re-encode the MPEG video to reduce the
frame rate, resolution or color depth). In some examples,
however, the plurality of encoders 108 in the computing
device 102 may include a null encoder which acts as a pass
through and does not apply any encoding scheme. For
example, if a region in the source image is derived from an
MPEG video and both sending and receiving systems (the
computing device 102 and the display device 106) support
this codec, the MPEG data may be transferred directly in the
multiplexed stream. This avoids the computational complex-
ity and latency of transcoding from one format to another.

The outputs of the plurality of encoders 108 are then mul-
tiplexed together (block 210) using a multiplexer 110 in the
computing device 102 before being transmitted over the
transmission link 104 to the display device 106 (block 212).
When the outputs are multiplexed together (in block 210),
information may be added to the multiplexed video stream for
use by the display device 106 in demultiplexing the video
stream. For example, the multiplexer 110 may combine the
streams from the various encoders 108 by encapsulating data
from each frame that describes the streams to the display
device 106 (e.g. to the demultiplexers 112 and combiner 113
within the display device). This description may, for example,
comprise properties (or is a reference to previously commu-
nicated properties) such as location, size, z-plane position,
transparency, decoder type and decoder instance (where there
are multiple decoders using the same encoding/decoding
scheme).

The display device 106 receives the multiplexed video
stream over the transmission link 104 and demultiplexes it
into the individual portions (block 220) using a demultiplexer
112. The demultiplexer 112 may use any additional informa-
tion added to the transmitted video stream to correctly split
the stream into portions and in some examples, the portions in
the display device 106 may not be exactly the same as in the
computing device 102 (although in other examples they may
be exactly the same). Each portion is then decoded (block
224) by one of the plurality of decoders 114 in the display
device 106. As with the encoders 108 in the computing device
102, each of the decoders 114 may be arranged to decode a
different encoding scheme or there may be more than one
decoder 114 which is arranged to decode the same encoding
scheme. Once the portions of the video data have been
decoded (inblock 224), the outputs from the various decoders
are combined (block 226) using combiner 113 and rendered
to the display 116 in the display device 106 (block 228).

The group of decoders which are used to decode any
received video stream may comprise all the decoders 114 in
the display device 106 or may comprise only a subset of the
plurality of decoders provided within the display device. The
group of decoders 114 which are used will correspond closely
to the group of encoders 108 which are used to encode the
video data because, for example, if an encoder 108 encodes a
portion using Huffman based compression, then a decoder
114 is required at the display device which is capable of
decoding data encoded using Huffman based compression.
However, the group of decoders 114 which are used may not
correspond exactly to the group of encoders 108 which are
used because where the original portion of video data was
already encoded, prior to further encoding by an encoder 108,
adecoder 114 may be used which is capable of decoding both

US 9,253,490 B2

5

encoding schemes or two separate decoders may be used.
Alternatively, if the encoder 108 was a null encoder, a decoder
114 is used which is capable of decoding the original encod-
ing scheme (and which does not correspond to the encoding
scheme, the null scheme, used by the encoder 108). It will be
appreciated that in the overall system, the decoding activities
will mirror the encoding activities in order that all the data can
be decoded, however, some of the initial encoding may have
been performed external to the computing device 102.

As there is a correspondence between the encoders 108
used at the computing device 102 (in block 208) and the
decoders 114 used at the display device (in block 224), the
encoding schemes (and hence encoders) used at the comput-
ing device 102 may be selected based on the capabilities of
the display device 106. For example, the encoders 108 at the
computing device 102 may comprise a large number (e.g.
super set) of encoders 108, some of which do not correspond
to any of the decoders 114 at the display device 106 to which
a particular video stream is to be transmitted (in block 212).
Consequently, the computing device 102 may map the difter-
ent portions of the video data to encoders (or encoding
schemes) based on the available decoders at the display
device. To enable this prior to the transmission of the video
data, the computing device 102 and display device 106 may
communicate to discover the display capabilities of the
remote display device 106. If the computing device transmits
video data to more than one display device, this mapping may
change according to the particular display device being used
atany time. The mapping may also be adapted based on other
factors such as feedback from the encoders and bandwidth of
the transmission link 104.

In some examples, an encoder 108 may be arranged to
perform transcoding of a portion of video data. In such an
example, the portion of data input to the encoder may be
encoded using a first encoding scheme which cannot be
decoded by any of the decoders at the display device. The
encoder may therefore transcode the portion of data such that
the data output from the encoder is no longer encoded using
the first encoding scheme but is, instead, encoded using a
second encoding scheme, where the second encoding scheme
can be decoded by one of the decoders at the display device.

There may be other reasons why transcoding is performed
at the computing device. If, for example, the display device
comprises only one decoder for a particular encoding scheme,
e.g. only one MPEG decoder, and the video data comprises
two portions which comprise MPEG video, one of these
portions may be transcoded by an encoder at the computing
device to an encoding scheme which corresponds to an avail-
able decoder at the remote display device.

FIG. 3 shows a schematic diagram of another computing
device 300 (e.g. a mobile computing device) which may be
used in the system of FIG. 1 instead of computing device 102.
This computing device 300 shows additional functional ele-
ments which are not shown in computing device 102; how-
ever, it should be appreciated that computing device 102 may
comprise one or more of the additional functional elements
shown in FIG. 3.

The computing device 300 comprises a mapping module
302. The mapping module 302 may be arranged to perform
the mapping between classes of image data (and/or portions
of video data) and encoders or encoding schemes and as
described above, this mapping may be fixed or may change
and may be dependent upon the capabilities of the remote
display device. In some examples, an encoder 108 may pro-
vide feedback to the mapping module 302 if the compression
used by the encoder is inefficient and the mapping module
302 may change the mapping based on this feedback. For

25

35

40

45

55

6

example, where there is a still image within a video sequence,
encoding this as a “video” class is inefficient and instead an
encoding scheme suitable for still images may be used (e.g. a
JPEG compression). In another example, where a video
shows titles or credits on a black background, this may be
more efficiently encoded with a bitmap encoder rather than a
video encoder.

In some examples, the mapping module 302 may modify
the mapping where the bandwidth of the transmission link
104 is limited. For example, initially the video stream (which
is one portion of the video data) may be encoded using Huft-
man based compression and a run-length encoded scheme
may be used for the bitmap data (which is another portion of
the video data). If the bandwidth of the transmission link is
found to limit throughput, the first portion (the video stream)
may instead be mapped to a lossy compression scheme (pro-
viding video with more artefacts) whilst keeping the frame
rate high. In contrast the second portion (the bitmap data) may
instead have the update rate reduced whilst maintaining high
clarity. A cursor may be a third class (and hence third portion)
and for this portion, response time (i.e. low latency) is impor-
tant for a good user experience and so it may be given priority
on the transmission link whilst using an encoding scheme
which keeps the data rate low.

The computing device 300 further comprises a video gen-
erator 304 which is arranged to generate the video data (e.g. as
in block 202 of FIG. 2), an image classifier 304 which is
arranged to classify the video data (e.g. as in block 204) and
a splitter 306 which is arranged to split the video data based
on the output of the classifier 304 (e.g. as in block 206). The
data output by the image classifier 304 may, for example,
comprise region information which identifies regions of the
video data as being of different classes (e.g. region 1 is a video
stream, region 2 is a bitmap graphic and region 3 is a cursor).
As described above, in some examples, the image classifier
304 and splitter 306 may not be required as the video data may
never be combined into the composite video data but may be
generated in the individual portions and these portions may be
sent directly to the different encoders 108.

Although FIG. 3 shows both a mapping module 302 and an
image classifier 306, it will be appreciated that in some
examples, a single module may perform both classification
and mapping. Similarly, a single module may perform any or
all of mapping, classification and splitting.

Although FIG. 1 only shows a single display device 106,
the same video data may be displayed on more than one
display device, as shown in the schematic diagram in FIG. 4.
FIG. 4 is a schematic diagram of another example video
transfer system 400 which comprises one computing device
402 and a plurality of display devices 404. The computing
device 402 may be as described above (e.g. as shown in either
FIG. 1 or 3) and the transmission links 406 may be wired or
wireless and in some examples, the system 400 may comprise
some wired links and some wireless links. Each of the display
devices 404 may be the same or they may be different (e.g. a
desktop monitor, a TV-screen, a large situated display, etc),
e.g. they may have different display capabilities.

As described above, the mapping of classes of image data
(or their corresponding portions of the video data) to encoders
(or encoding schemes) may depend on the capabilities of the
display device to which the video data is transmitted. Where
the computing device 402 transmits the same video data to
multiple display devices 404 at substantially the same time,
the mapping may be selected based on the least capable
display device.

The system 100 in FIG. 1 shows a point-to-point link and
the system 400 in FIG. 4 shows a point-to-multipoint system.

US 9,253,490 B2

7

It will be appreciated that a further example system may
comprise a plurality of computing devices and at any one
time, a display device in such a system may be receiving
video data from one or more computing devices.

FIG. 5 is a schematic diagram of a further example video
transfer system 500 which may be considered a more detailed
example of the systems 100, 400 described above. The opera-
tion of this system 500 may be described with reference to
FIG. 6 which is a flow diagram of another example method of
optimized video transfer. FIG. 6 may be considered a more
detailed example of the method shown in FIG. 2.

FIG. 5 shows a computing device 502, which may be a
mobile computing device, and a display device 504 which are
connected by a transmission link 506 (which may be a wire-
less link). The computing device 502 comprises a processor
508, a memory 509 and a communication interface 510. If the
computing device 502 comprises a local display 512 (e.g.
which may be integral to the computing device 502, such as
the small form factor display on a mobile telephone or tablet
computer), the computing device 502 may further comprise a
graphics system 513 (e.g. a graphics card) and local display
driver 515 (which may be implemented in software and stored
in memory 509). Platform software comprising an operating
system 516 or any other suitable platform software may be
provided at the computing-based device to enable application
software 518 to be executed on the device. The computing
device 502 further comprises a plurality of encoders 519
which may be implemented in software (and stored in
memory 509) and/or in hardware.

FIG. 5 also shows a display device 504, which may be
located close to the computing device 502 (e.g. in the same
room) or more remotely from the computing device 502 (e.g.
in another country with the communication link 506 being
over the internet). The display device 504 does not necessary
comprise the full functionality of the computing device 502
but may only comprise the functionality required to render
graphics to a display device 520. The rendering is performed
by a graphics system 522 which comprises a GPU (Graphics
Processing Unit) 523, framebuffer 524 and in some examples,
one or more graphics accelerators 526. The display device
504 further comprises a communication interface 528 and a
plurality of decoders 530 which may be implemented in soft-
ware and/or in hardware. Where one or more of the decoders
530 are implemented in software, the display device 504 may
further comprise a memory (to store the decoder instructions)
and a processor (to execute the stored instructions).

The optimized video transfer is implemented in the com-
puting device 502 using the plurality of encoders 519, the
communication interface 510 (to perform the transmission to
the display device 504 and in some examples to perform the
multiplexing of the outputs of the encoders 519, where a
separate multiplexer is not provided) and a remote display
driver 534 (which may be implemented in software and stored
in memory 509). To the operating system 516 and applica-
tions 518 it appears that they are rendering images on a local
display (e.g. display device 512); however, the video data is
transferred transparently to the remote display device 504.

The remote display driver 534 advertises a plurality of
classes of image data to the operating system 516 (block 602,
arrow 51), where these classes correspond to the capabilities
of the remote display device 504 (e.g. based on the decoders
530 available at the remote display device 504). The infor-
mation about the decoders 530 may have been previously
passed from the display device 504 to the remote display
driver 534 via the communication interfaces 528, 510 (arrow
50). The applications 518 access the remote display driver

10

15

20

25

30

35

40

45

50

55

60

65

8

534 and find its capabilities (e.g. which relate to the adver-
tised classes) through the operating system 516 (block 604,
arrow 52).

When an application 518 attempts to render something to a
display, it provides graphics commands to the remote display
driver 534 via the operating system 516 (block 606, arrow
53). The remote display driver 534 acts as a mapping module/
image classifier and determines which encoder 519 to send
each class of graphics commands to (block 608, arrow 54).

The encoders 519 encode the graphics commands received
from the remote display driver 534 (block 610) and the output
of the encoders are sent to the communication interface 510
(arrow 55). The communication interface 510 multiplexes the
encoder outputs together (block 612) or alternatively a sepa-
rate multiplexer may be provided and then the communica-
tion interface 510 transmits the multiplexed video stream
over the communication link 506 to the display device 504
(block 614, arrow 56).

Within the display device 504, the communication inter-
face 528 demultiplexes the received signal (block 616) and as
described above, this may be based on additional information
inserted into the signal when the encoder outputs were mul-
tiplexed together (in block 612). Alternatively, a separate
demultiplexer may be provided within the display device 504.
The various outputs from the demultiplexing operation are
output to the decoders 530 (arrow 57) which perform the
decoding (block 618). The output from the decoders (the
graphics commands) are then sent to the graphics system 522
(arrow 58) where they are used to render the video on the
display 520 (block 620).

Using the method shown in FIGS. 5 and 6 and described
above, the source images (from the application 518) are never
rendered in their entirety at the computing device 502 and it
should be noted that the method does not use a framebuffer at
the computing device 502. The only place that the images are
rendered in their entirety and stored in a framebuffer 524 is at
the display device 504. This improves memory bandwidth
and reduces processing load at the computing device 502
which may be particularly beneficial where the computing
device 502 is a handheld, resource constrained device (e.g. in
terms of processing power, memory and/or battery power).

Referring back to FIG. 3, in this embodiment there is no
classifier 306 or splitter 308 and the mapping is managed
within the remote display driver and/or the application (based
on the capabilities advertised by the remote display driver).

Although in the description of FIGS. 5 and 6 above, the
video is rendered on the remote display device 520, in further
examples the video may additionally be rendered on a local
display 512. In such an example, the remote display driver
534 may pass the graphics commands to the local display
driver 515 (arrow 60) and the local display driver 515 may
write to the local framebuffer 524 (arrow 61).

FIG. 7 is a schematic diagram of a further example video
transfer system 700 which may be considered a more detailed
example of the systems 100, 400 described above. The opera-
tion of this system 700 may be described with reference to
FIG. 8 which is a flow diagram of a further example method
of'optimized video transfer. FIG. 8 may be considered a more
detailed example of the method shown in FIG. 2.

FIG. 7 shows a computing device 702, which may be a
mobile computing device, and a display device 704 which are
connected by a transmission link 706 (which may be a wire-
less link). The computing device 702 comprises a processor
708, a memory 709 and a communication interface 710, a
local display 712 (e.g. which may be integral to the comput-
ing device 702, such as the small form factor display on a
mobile telephone or tablet computer), a graphics system 713

US 9,253,490 B2

9

(which comprises a framebuffer 714) and local display driver
715 (which may be implemented in software and stored in
memory 709). Platform software comprising an operating
system 716 or any other suitable platform software may be
provided at the computing-based device to enable application
software 718 to be executed on the device. The computing
device 702 further comprises a plurality of encoders 719
which may be implemented in software (and stored in
memory 709) and/or in hardware.

FIG. 7 also shows a display device 704, which may be
located close to the computing device 702 (e.g. in the same
room) or more remotely from the computing device 702. The
display device 704 does not necessary comprise the full func-
tionality of the computing device 702 but may only comprise
the functionality required to render graphics to a display
device 720. The rendering is performed by a graphics system
722 which comprises a GPU (Graphics Processing Unit) 723,
framebuffer 724 and in some examples, one or more graphics
accelerators 726. The display device 704 further comprises a
communication interface 728 and a plurality of decoders 730
which may be implemented in software and/or in hardware.
Where one or more of the decoders 730 are implemented in
software, the display device 704 may further comprise a
memory (to store the decoder instructions) and a processor (to
execute the stored instructions).

The optimized video transfer is implemented in the com-
puting device 702 using the plurality of encoders 719, the
communication interface 710 (to perform the transmission to
the display device 704 and in some examples to perform the
multiplexing of the outputs of the encoders 719, where a
separate multiplexer is not provided) and a filter driver 734
(which may be implemented in software and stored in
memory 709). To the operating system 716 and applications
718 it appears that they are rendering images on the local
display 712, however, the video data is transferred transpar-
ently to the remote display device 704 and the image is
rendered on both the local and remote displays 712, 720.

The local display driver 715 advertises its capabilities to
the operating system 716 (block 802, arrow 71), where these
capabilities are based on the local capabilities (e.g. graphics
system 713 and display device 712). The applications 718
access the local display driver 715 and find its capabilities
through the operating system 716 (block 804, arrow 72).

When an application 718 attempts to render something to a
display, it provides graphics commands to the local display
driver 715 via the operating system 716 (block 806, arrow 73)
and the filter driver 734 sniffs these commands (block 808, as
indicated by arrow 73 passing through the filter driver 734),
i.e. the filter driver 734 observes but does not change the
graphics commands which continue to their original destina-
tion (in contrast to the previous embodiment where the
remote display driver intercepted the graphics commands). In
the standard way, the graphics commands are sent to the local
graphics system 713 by the local display driver 715 (block
810, arrow 74) and the graphics system 713 renders the
frames and stores them in the framebuffer 714 (block 812).

The filter driver 734 accesses the image data stored in the
framebutfer 714 (arrow 75) and classifies and splits the data
into portions (block 814), each portion comprising a class of
image data, based on the information obtained by sniffing the
graphics commands (in block 808). The classification and
splitting of the data (in block 814) may be performed by
observing which regions are targeted by each class of drawing
commands and using this information to determine which
regions are video, which are photographs, which are bitmap
graphics, etc. The individual portions of data generated by the
filter driver 734 (in block 814) are then sent to the encoders

10

15

20

25

30

35

40

45

50

55

60

65

10
719 by the filter driver 734 (block 816, arrow 76), such that
the filter driver 734 also performs the class/portion to encoder
mapping. Referring back to FIG. 3, it can be seen that the filter
driver 734 acts as the mapping module 302, the image clas-
sifier 306 and the splitter 308.

The encoders 719 encode the image data received from the
filter driver 734 (block 818) and the output of the encoders are
sent to the communication interface 710 (arrow 77). The
communication interface 710 multiplexes the encoder out-
puts together (block 820) or alternatively a separate multi-
plexer may be provided and then the communication interface
710 transmits the multiplexed video stream over the commu-
nication link 706 to the display device 704 (block 822, arrow
78).

Within the display device 704, the communication inter-
face 728 demultiplexes the received signal (block 824) and as
described above, this may be based on additional information
inserted into the signal when the encoder outputs were mul-
tiplexed together (in block 820). Alternatively, a separate
demultiplexer may be provided within the display device 704.
The various outputs from the demultiplexing operation are
output to the decoders 730 (arrow 79) which perform the
decoding (block 826). The output from the decoders are then
sent to the graphics system 722 (arrow 80) where they are
used to render the video on the display (block 828).

In this example, the content of the framebuffer 724 in the
display device 704 matches the content of the framebuffer
714 in the computing device 702; however the transfer of this
data between the computing device 702 and display device
704 has been performed with improved efficiency. Although
FIG. 7 shows the framebuffer 714 being located within the
graphics system 713, it will be appreciated that it may alter-
natively be implemented in the main processor memory 709.

FIG. 9 is a schematic diagram of a further example video
transfer system 900 which may be considered a more detailed
example of the systems 100, 400 described above. The opera-
tion of this system 900 may be described with reference to
FIG. 10 which is a flow diagram of a yet further example
method of optimized video transfer. FIG. 10 may be consid-
ered a more detailed example of the method shown in FIG. 2.

FIG. 9 shows a computing device 902, which may be a
mobile computing device, and a display device 904 which are
connected by a transmission link 906 (which may be a wire-
less link). The computing device 902 comprises a processor
908, 2 memory 909 and a communication interface 910, a
local display 912 (e.g. which may be integral to the comput-
ing device 902, such as the small form factor display on a
mobile telephone or tablet computer), a graphics system 913
(which comprises a framebuffer 914) and local display driver
915 (which may be implemented in software and stored in
memory 909). Platform software comprising an operating
system 916 or any other suitable platform software may be
provided at the computing-based device to enable application
software 918 to be executed on the device. The computing
device 902 further comprises a plurality of encoders 919
which may be implemented in software (and stored in
memory 909) and/or in hardware.

FIG. 9 also shows a display device 904, which may be
located close to the computing device 902 (e.g. in the same
room) or more remotely from the computing device 902. The
display device 904 does not necessary comprise the full func-
tionality of the computing device 902 but may only comprise
the functionality required to render graphics to a display
device 920. The rendering is performed by a graphics system
922 which comprises a GPU (Graphics Processing Unit) 923,
framebutfer 924 and in some examples, one or more graphics
accelerators 626. The display device 904 further comprises a

US 9,253,490 B2

11

communication interface 928 and a plurality of decoders 930
which may be implemented in software and/or in hardware.
Where one or more of the decoders 930 are implemented in
software, the display device 904 may further comprise a
memory (to store the decoder instructions) and a processor (to
execute the stored instructions).

The optimized video transfer is implemented in the com-
puting device 902 using the plurality of encoders 919, the
communication interface 910 (to perform the transmission to
the display device 904 and in some examples to perform the
multiplexing of the outputs of the encoders 919, where a
separate multiplexer is not provided) and a remote display
driver 934 (which may be implemented in software and stored
inmemory 909). As is described in detail below, the operation
of the remote display driver 934 is different from the remote
display driver 534 shown in FIG. 5. To the operating system
916 and applications 918 it appears that they are rendering
images on the local display 912, however, the video data is
transferred transparently to the remote display device 904 and
is rendered on both the local display 912 and remote display
920.

The local display driver 915 advertises its capabilities to
the operating system 916 (block 1002, arrow 91), where these
capabilities are based on the local capabilities (e.g. graphics
system 913 and display device 912). The applications 918
access the local display driver 915 and find its capabilities
through the operating system 916 (block 1004, arrow 92).

When an application 918 attempts to render something to a
display, it provides graphics commands to the local display
driver 915 via the operating system 916 (block 1006, arrow
93). In the standard way, the graphics commands are sent to
the local graphics system 913 by the local display driver 915
(block 1008, arrow 94) and the graphics system 913 renders
the frames and stores them in the framebuffer 914 (block
1010).

The remote display driver 934 accesses the image data
stored in the framebuffer 914 (arrow 95) and classifies and
splits the data into portions (block 1012), each portion com-
prising a class of image data, based on the rate of update of
pixels between frames stored in the framebuffer 914. The
individual portions of data generated by the remote display
driver 934 (inblock 1012) are then sent to the encoders 919 by
the remote display driver 834 (block 1014, arrow 96), such
that the remote display driver 934 also performs the class/
portion to encoder mapping. Referring back to FIG. 3, it can
be seen that the remote display driver 934 acts as the mapping
module 302, the image classifier 306 and the splitter 308.

As aresult of the way that the image data is classified (i.e.
on the basis of rate of change of pixels in the framebufter 914)
the classes used in this implementation may be different to
previous implementations. In an example, for sets of pixels
which are updated regularly, perhaps every frame, which will
therefore constitute one class of image data, a lossy compres-
sion scheme (such as H. 264) may be used. Another class of
image data may comprise the set of pixels which update
relatively slowly and for this class, a lossless compression
scheme may be used to preserve image quality.

The encoders 919 encode the image data received from the
remote display driver 934 (block 1016) and the output of the
encoders are sent to the communication interface 910 (arrow
97). The communication interface 910 multiplexes the
encoder outputs together (block 1018) or alternatively a sepa-
rate multiplexer may be provided and then the communica-
tion interface 910 transmits the multiplexed video stream
over the communication link 906 to the display device 904
(block 1020, arrow 98).

10

15

20

25

30

35

40

45

50

55

60

65

12

Within the display device 904, the communication inter-
face 928 demultiplexes the received signal (block 1022) and
as described above, this may be based on additional informa-
tion inserted into the signal when the encoder outputs were
multiplexed together (in block 1018). Alternatively, a sepa-
rate demultiplexer may be provided within the display device
904. The various outputs from the demultiplexing operation
are output to the decoders 930 (arrow 99) which perform the
decoding (block 1024). The output from the decoders are then
sent to the graphics system 922 (arrow 100) where they are
used to render the video on the display (block 1026).

Inthis example (as in the example shown in FIGS. 7 and 8),
the content of the framebuffer 924 in the display device 904
almost matches the content of the framebuffer 914 in the
computing device 902 (there is not an exact match because of
the lossy compression); however the transfer of this data
between the computing device 902 and display device 904
has been performed with improved efficiency.

In this example the remote display driver 934 does not use
information obtained from elsewhere in performing the clas-
sification (in block 1012) but instead learns based on the
image data stored in the local framebuffer 914. This method
may therefore be implemented in scenarios where this infor-
mation is not available (e.g. where the remote display driver
934 does not have access to be able to sniff graphics com-
mands, as shown in FIG. 7 or to intercept them, as shown in
FIG. 5).

Although FIG. 9 shows the framebuffer 914 being located
within the graphics system 913, it will be appreciated that it
may alternatively be implemented in the main processor
memory 909.

The processors 508, 708, 908 shown in FIGS. 5, 7 and 9
may be microprocessors, controllers or any other suitable
type of processors for processing computer executable
instructions to control the operation of the computing device
502,702,902. In some examples, for example where a system
on a chip architecture is used, the processors 508, 708, 908
may include one or more fixed function blocks (also referred
to as accelerators) which implement a part of the method of
operation in hardware (rather than software or firmware), e.g.
in a similar manner to the graphics accelerators 526, 726, 926
shown in the display device 504, 704, 904.

The computer executable instructions may be provided
using any computer-readable media that is accessible by com-
puting based device 500, 700, 900. Computer-readable media
may include, for example, computer storage media such as
memory 509, 709, 909 and communications media. Com-
puter storage media, such as memory 509, 709, 909, includes
volatile and non-volatile, removable and non-removable
media implemented in any method or technology for storage
of information such as computer readable instructions, data
structures, program modules or other data. Computer storage
media includes, but is not limited to, RAM, ROM, EPROM,
EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disks (DVD) or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other non-transmis-
sion medium that can be used to store information for access
by a computing device. In contrast, communication media
may embody computer readable instructions, data structures,
program modules, or other data in a modulated data signal,
such as a carrier wave, or other transport mechanism. As
defined herein, computer storage media does not include
communication media. Although the computer storage media
(memory 509, 709, 909) is shown within the computing-
based device 500, 700, 900 it will be appreciated that the
storage may be distributed or located remotely and accessed

US 9,253,490 B2

13
via a network or other communication link (e.g. using com-
munication interface 510, 710, 910).

The computing-based devices 500, 700, 900 may also com-
prise additional elements not shown in FIGS. 5, 7 and 9, such
as an input controller arranged to receive and process input
from one or more devices, such as a user input device (e.g. a
mouse or a keyboard). This user input may be used to provide
user input to the operating system 516, 716, 916 and/or appli-
cation software 518, 718, 918. In an embodiment the display
device 512, 712, 812 may also act as the user input device if
it is a touch sensitive display device (e.g. a touch sensitive
screen on a mobile telephone or tablet computer).

It will be appreciated that although FIGS. 5-10 show three
different embodiments, aspects of any of these may be com-
bined to produce further embodiments and they may be com-
bined with aspects of the other examples described herein
(e.g. with reference to any of FIGS. 1-4). For example, the
second embodiment (shown in FIGS. 7-8) and the third
embodiment (shown in FIGS. 9-10) may be combined such
that different portions are examined (by comparing pixels) to
see whether they should be encoded differently from that
suggested from the sniffed graphics commands. In a combi-
nation of the first and third embodiments, learning may be
applied to the remote display driver 534 such that if there are
lots of updates from an application, a different mapping may
be used (e.g. a lossy encoding scheme may be used based on
the fact that there is motion in the video).

By using the methods described herein, the efficiency of
transferring composite video data is increased. Instead of
optimizing the transfer for a single class, an encoding scheme
may be selected for each class which is optimum for that
particular class. As described above, the different encoding
schemes may include different update rates as well as differ-
ent codecs. For example, by using different update rates, the
data for a slide presentation (e.g. using Microsoft™ Power-
Point™) may only be transmitted when a slide changes rather
than on a frame by frame basis or using any other artificial
time period.

The methods described herein may be implemented in
many different systems for many different applications. In
various examples, however, the methods may be imple-
mented in a remote display system, where the term ‘remote’
does not necessarily imply a large physical separation
between the computing device and the display device. In
many examples, the computing device and the remote display
device may be in the same room and may enable the display
on a small form factor device (such as a tablet computer or
mobile telephone) to be rendered on a larger display (such as
a desktop monitor). Such a system may, therefore, enable the
small form factor device to be used as if it was a desktop
computer. In such systems the transmission link may be wire-
less (e.g. using Wi-Fi™). In other examples, the remote dis-
play device may be in another geographical location (e.g.
another town or another country) with the communication
link being over the interne.

The terms ‘computer’ and ‘computing device’ are used
herein to refer to any device with processing capability such
that it can execute instructions. Those skilled in the art will
realize that such processing capabilities are incorporated into
many different devices and therefore the terms ‘computer’
and ‘computing device’ include PCs, servers, mobile tele-
phones, personal digital assistants, gaming devices and many
other devices.

Those skilled in the art will realize that storage devices
utilized to store program instructions can be distributed
across a network. For example, a remote computer may store
an example of the process described as software. A local or

20

35

40

45

55

60

65

14

terminal computer may access the remote computer and
download a part or all of the software to run the program.
Alternatively, the local computer may download pieces of the
software as needed, or execute some software instructions at
the local terminal and some at the remote computer (or com-
puter network). Those skilled in the art will also realize that
by utilizing conventional techniques known to those skilled in
the art that all, or a portion of the software instructions may be
carried out by a dedicated circuit, such as a DSP, program-
mable logic array, or the like.

Any range or device value given herein may be extended or
altered without losing the effect sought, as will be apparent to
the skilled person.

It will be understood that the benefits and advantages
described above may relate to one embodiment or may relate
to several embodiments. The embodiments are not limited to
those that solve any or all of the stated problems or those that
have any or all of the stated benefits and advantages.

Any reference to ‘an’ item refers to one or more of those
items. The term ‘comprising’is used herein to mean including
the method blocks or elements identified, but that such blocks
or elements do not comprise an exclusive list and a method or
apparatus may contain additional blocks or elements.

The term ‘subset’ is used herein to refer to a proper subset,
i.e. a subset of elements does not comprise all the elements in
the set.

The steps of the methods described herein may be carried
out in any suitable order, or simultaneously where appropri-
ate. Additionally, individual blocks may be deleted from any
of'the methods without departing from the spirit and scope of
the subject matter described herein. Aspects of any of the
examples described above may be combined with aspects of
any of the other examples described to form further examples
without losing the effect sought.

It will be understood that the above description of a pre-
ferred embodiment is given by way of example only and that
various modifications may be made by those skilled in the art.
Although various embodiments have been described above
with a certain degree of particularity, or with reference to one
or more individual embodiments, those skilled in the art could
make numerous alterations to the disclosed embodiments
without departing from the spirit or scope of this invention.

The invention claimed is:

1. A method comprising, at a computing device:

using a plurality of encoders to encode different portions of

display data using different encoding schemes to encode
each of the different portions of display data with a
selected one of the plurality of encoders;

multiplexing the encoded different portions together to

form a single stream;

mapping each class of a plurality of classes of image data to

the selected one of the plurality of encoders, wherein the
selected one of the plurality of encoders is selected for a
portion of display data according to the mapping; and
transmitting the single stream to a remote display device
over a transmission link, wherein the display data is
divided into the different portions of display data
according to the plurality of classes of image data.

2. A method according to claim 1, wherein the different
portions of display data are generated by one or more appli-
cations running on the computing device and the method
further comprises:

advertising the plurality of classes of image data to the one

or more applications, the plurality of classes of image
data being dependent upon capabilities of the remote
display device.

US 9,253,490 B2

15

3. A method according to claim 2, wherein the display data
is not rendered in a framebufter at the computing device.
4. A method according to claim 1, further comprising:
updating the mapping based on one or more of: feedback
from an encoder and a bandwidth constraint of the trans-
mission link.
5. A method according to claim 1, wherein the display data
comprises image data stored in a framebuffer at the comput-
ing device and the method further comprising:

monitoring graphics commands issued by one or more 10

applications running on the computing device and which
result in display data being stored in the framebuffer;
and

accessing the display data stored in the framebuffer,
wherein

the display data is divided into the different portions of
display data using information obtained from the moni-
tored graphics commands.

6. A method according to claim 1, wherein the display data
comprises image data stored in a framebuffer at the comput-
ing device and the method further comprising:

accessing the display data stored in the framebuffer,
wherein

the display data is divided into the different portions of
display data based on a rate of update of pixels in the
display data.

7. A method according to claim 1, wherein the transmission

link is a wireless link.

8. A method according to claim 1, wherein the plurality of
classes of image data comprise at least two of: a video stream,
a bitmap graphic and a cursor.

9. A method according to claim 1, wherein the different
encoding schemes comprise one or more of: a lossy compres-
sion scheme, a lossless compression scheme and a plurality of
instances of a compression scheme, each instance using a
different update rate.

10. A method according to claim 1, wherein the different
encoding schemes further comprise a null encoding scheme
arranged to pass data through without further encoding it.

11. A method according to claim 1, wherein using the
plurality of encoders to encode the different portions of dis-
play data using the different encoding schemes comprises:

applying a second encoding scheme to the portion of dis-
play data encoded using a first encoding scheme.

12. A system comprising a computing device, the comput-
ing:

a source of display data;

aplurality of encoders, wherein each encoder is arranged to
encode different portions of display data using different
encoding schemes;

a multiplexer arranged to multiplex the encoded different
portions together to form a single stream for transmis-
sion to a remote display device over a transmission link,
wherein the display data is divided into the different
portions of display data according to a plurality of
classes of image data; and

35

40

45

50

55

16

a mapping module arranged to map the different portions
ofthe display data to encoders using the different encod-
ing schemes according to the plurality of classes of
image data.

13. A system according to claim 12, wherein the computing

device further comprises:

an image classifier arranged to classify the display data
according to the plurality of classes of image data; and

a splitter arranged to divide the display data generated by
the source of display data according to an output of the
image classifier.

14. A system according to claim 12, the computing device

further comprising:

a remote display driver arranged to advertise the plurality
of classes of image data to the source of display data, the
plurality of classes of image data being dependent upon
capabilities of the remote display device, and wherein
the source of display data comprises an application run-
ning on the computing device and the application gen-
erates the portions of display data.

15. A system according to claim 12, wherein the source of
display data comprises one or more applications running on
the computing device and the computing device further com-
prises:

a framebuffer; and

adriver arranged to monitor graphics commands generated
by the one or more applications, access display data
stored in the framebufter and divide the display data into
portions based on the plurality of classes of image data
and the monitored graphics commands.

16. A system according to claim 12, wherein the source of
display data comprises one or more applications running on
the computing device and the computing device further com-
prises:

a framebuffer; and

adriver arranged to access display data stored in the frame-
buffer and divide the display data into portions based on
the plurality of classes of image data and a rate of change
of pixels in the display data.

17. A system according to claim 12, further comprising the

remote display device, the remote display device comprising:

a display;

a demultiplexer arranged to demultiplex a stream of dis-
play data received from the computing device into a
plurality of portions;

a plurality of decoders, each decoder arranged to decode a
portion of the display data using a decoding scheme; and

a graphics system arranged to render the decoded portions
of the display data to the display.

18. A system according to claim 12, wherein the computing

device comprises a mobile computing device and the trans-
mission link comprises a wireless transmission link.

#* #* #* #* #*

